26 research outputs found

    Laser powder bed fusion of aluminum alloys

    Get PDF
    The aim of this study is to analyze and to summarize the results of the processing of aluminum alloys, and in particular of the Al-Si-Mg alloys, by means of the Additive Manufacturing (AM) technique defined as Laser Powder Bed Fusion (L-PBF). This process is gaining interest worldwide thanks to the possibility of obtaining a freeform fabrication coupled with high mechanical strength and hardness related to a very fine microstructure. L-PBF is very complex from a physical point of view, due to the extremely rapid interaction between a concentrated laser source and micrometric metallic powders. This generate very fast melting and subsequent solidification on each layer and on the previously consolidated substrate. The effects of the main process variables on the microstructure and mechanical properties of the final parts are analyzed: from the starting powder properties, such as shape and powder size distribution, to the main process parameters, such as laser power, scanning speed and scanning strategy. Furthermore, some examples of applications for the AlSi10Mg alloy are illustrated.</p

    MIG and TIG Joining of AA1070 Aluminium Sheets with Different Surface Preparations

    Get PDF
    In this work, AA1070 aluminium alloy sheets are joined using TIG and MIG welding after three different edge preparations. Shearing, water jet and plasma-cut processes were used to cut sheets, subsequently welded using ER5356 and ER4043 filler metals for TIG and MIG, respectively. Mechanical properties of the obtained sheets were assessed through tensile tests obtaining a relation between sheet preparation and welding tightness. Micro-hardness measures were performed to evaluate the effects of both welding and cutting processes on the micro-hardness of the alloy, highlighting that TIG welding gives rise to inhomogeneous micro-hardness behaviour. After tensile tests, surface fractures were observed employing scanning electron microscopy to highlight the relation between tensile properties and edge preparations. Fractures show severe oxidation in the water jet cut specimens, ductile fractures and gas porosities

    Aluminium alloy addition effects on the behaviour of soft magnetic materials at low frequencies

    Get PDF
    The present paper focused on the effects of aluminium alloy addition on the behaviour of soft magnetic materials at low frequencies. The microstructure investigation reveals that for materials with high aluminium contents, the pores are oriented near or surrounding the aluminium particles. The microstructure investigation reveals that for materials with high aluminium contents, the pores are oriented near or surrounding the aluminium particles, as well as after heat treatment shows coarse-grained structure with a minimum number of inclusions within the grains and at the grain boundaries. Results show that the magnetic properties are dependent on the structural state of the investigated material. Magnetic properties increased with decreasing density due to the enhanced densification by means of applied pressing pressure and promote porosity reduction during heat treatment

    Effect of granulometry and oxygen content on SMC magnetic properties

    Get PDF
    The interest around the adoption of Soft Magnetic Composite materials (SMC) in the realization of electric machines, or parts of electric machines, is continuously increasing. The main reason lies on the opportunity to realize magnetic circuits following a 3D design procedure, which is not allowed with the adoption of the traditional lamination sheets. This is not the only reason, as a lot of research is being carried out on the losses distribution in the magnetic material, particularly as function of the frequency. In this paper different iron powders have been analyzed to investigate the impact of the granulometry on the SMC performance; in particular the grain size and the oxygen content have been considered variable parameters. The materials, prepared, compacted and tested in our laboratories, have been characterized to obtain the magnetic characteristic and information about the iron losses

    Investigation of the Properties of 316L Stainless Steel after AM and Heat Treatment

    Get PDF
    Additive manufacturing, including laser powder bed fusion, offers possibilities for the production of materials with properties comparable to conventional technologies. The main aim of this paper is to describe the specific microstructure of 316L stainless steel prepared using additive manufacturing. The as-built state and the material after heat treatment (solution annealing at 1050 °C and 60 min soaking time, followed by artificial aging at 700 °C and 3000 min soaking time) were analyzed. A static tensile test at ambient temperature, 77 K, and 8 K was performed to evaluate the mechanical properties. The characteristics of the specific microstructure were examined using optical microscopy, scanning electron microscopy, and transmission electron microscopy. The stainless steel 316L prepared using laser powder bed fusion consisted of a hierarchical austenitic microstructure, with a grain size of 25 µm as-built up to 35 µm after heat treatment. The grains predominantly contained fine 300–700 nm subgrains with a cellular structure. It was concluded that after the selected heat treatment there was a significant reduction in dislocations. An increase in precipitates was observed after heat treatment, from the original amount of approximately 20 nm to 150 nm

    Investigation of the Properties of 316L Stainless Steel after AM and Heat Treatment

    Get PDF
    Additive manufacturing, including laser powder bed fusion, offers possibilities for the production of materials with properties comparable to conventional technologies. The main aim of this paper is to describe the specific microstructure of 316L stainless steel prepared using additive manufacturing. The as-built state and the material after heat treatment (solution annealing at 1050 degrees C and 60 min soaking time, followed by artificial aging at 700 degrees C and 3000 min soaking time) were analyzed. A static tensile test at ambient temperature, 77 K, and 8 K was performed to evaluate the mechanical properties. The characteristics of the specific microstructure were examined using optical microscopy, scanning electron microscopy, and transmission electron microscopy. The stainless steel 316L prepared using laser powder bed fusion consisted of a hierarchical austenitic microstructure, with a grain size of 25 mu m as-built up to 35 mu m after heat treatment. The grains predominantly contained fine 300-700 nm subgrains with a cellular structure. It was concluded that after the selected heat treatment there was a significant reduction in dislocations. An increase in precipitates was observed after heat treatment, from the original amount of approximately 20 nm to 150 nm

    Case Study of the Tensile Fracture Investigation of Additive Manufactured Austenitic Stainless Steels Treated at Cryogenic Conditions

    Get PDF
    Additive manufacturing is a key enabling technology in the manufacture of highly complex shapes, having very few geometric limitations compared to traditional manufacturing processes. The present paper aims at investigating mechanical properties at cryogenic temperatures for a 316L austenitic stainless steel, due to the wide possible cryogenic applications such as liquid gas confinement or superconductors. The starting powders have been processed by laser powder bed fusion (LPBF) and tested in the as-built conditions and after stress relieving treatments. Mechanical properties at 298, 77 and 4.2 K from tensile testing are presented together with fracture surfaces investigated by field emission scanning electron microscopy. The results show that high tensile strength at cryogenic temperature is characteristic for all samples, with ultimate tensile strength as high as 1246 MPa at 4.2 K and 55% maximum total elongation at 77 K. This study can constitute a solid basis for investigating 316L components by LPBF for specific applications in cryogenic conditions

    Case Study of the Tensile Fracture Investigation of Additive Manufactured Austenitic Stainless Steels Treated at Cryogenic Conditions

    Get PDF
    Additive manufacturing is a key enabling technology in the manufacture of highly complex shapes, having very few geometric limitations compared to traditional manufacturing processes. The present paper aims at investigating mechanical properties at cryogenic temperatures for a 316L austenitic stainless steel, due to the wide possible cryogenic applications such as liquid gas confinement or superconductors. The starting powders have been processed by laser powder bed fusion (LPBF) and tested in the as-built conditions and after stress relieving treatments. Mechanical properties at 298, 77 and 4.2 K from tensile testing are presented together with fracture surfaces investigated by field emission scanning electron microscopy. The results show that high tensile strength at cryogenic temperature is characteristic for all samples, with ultimate tensile strength as high as 1246 MPa at 4.2 K and 55% maximum total elongation at 77 K. This study can constitute a solid basis for investigating 316L components by LPBF for specific applications in cryogenic conditions
    corecore